Lecture 3: Word Window Classification, Neural Nets, and Calculus
Classification review/introduction
Neural networks introduction
Named Entity Recognition
Binary true vs. corrupted word window classification
Matrix calculus introduction
Classification setup and notation
training dataset
• xi : inputs (words, sentences, documents)
• yi : labels (sentiment, named entities, buy/sell decision)
softmax classfier
• Fixed 2D word vectors to classify
• Using softmax/logistic regression
• Linear decision boundary
softmax classfier
Training with softmax and cross-entropy loss
- probability of the correct class 를 최대화
- the negative log probability of that class 를 최소화
cross entropy
p: true probability distribution
q: computed model probability
p = [0,…,0,1,0,…0] (one-hot) >>> the negative log probability of the true class
cross entropy loss function
Traditional ML optimization
기존의 machine learning 의 θ W의 열로만 이루어져있다.
decision boundary가 다음과 같이 업데이트된다.
Neural Network
softmax/ logistic regression 의 경우 decision boundaries 가 linear 하다.
linear 하면 복잡한 문제의 경우, 비효율적이다.
Neural network의 경우, 더 복잡한 함수와 nonlinear한 decision boundary를 학습할 수 있다.
'cs224n' 카테고리의 다른 글
lecture6 (0) | 2021.05.20 |
---|---|
[cs224n] lecture 5. Dependency Parsing 강의 필기 (0) | 2021.05.14 |
[cs224n] lecture 4. Backpropagation 강의 필기 (0) | 2021.05.13 |
[cs224n] lecture 2. Word Vectors 2 and Word Window Classification 강의 필기 (0) | 2021.05.10 |
[cs224n] lecture 1. Introduction and Word Vectors 강의 필기 (0) | 2021.05.06 |
댓글